Gastrodin promotes CNS myelinogenesis and alleviates demyelinating injury by activating the PI3K/AKT/mTOR signaling.

天麻素通过激活 PI3K/AKT/mTOR 信号通路促进中枢神经系统髓鞘形成并减轻脱髓鞘损伤

阅读:6
作者:Shi Xiao-Yu, He Yi-Xi, Ge Man-Yue, Liu Peng, Zheng Ping, Li Zheng-Hao
Demyelination is a common feature of numerous neurological disorders including multiple sclerosis and leukodystrophies. Although myelin can be regenerated spontaneously following injury, this process is often inadequate, potentially resulting in neurodegeneration and exacerbating neurological dysfunction. Several drugs aimed at promoting the differentiation of oligodendrocyte precursor cells (OPCs) have yielded unsatisfactory clinical effects. A recent study has shifted the strategy of pro-OPC differentiation towards enhancing myelinogenesis. In this study we identified the pro-myelinating drug using a zebrafish model. Five traditional Chinese medicine monomers including gastrodin, paeoniflorin, puerarin, salidroside and scutellarin were assessed by bath-application in Tg (MBP:eGFP-CAAX) transgenic line at 1-5 dpf. Among the 5 monomers, only gastrodin exhibited significant pro-myelination activity. We showed that gastrodin (10 µM) enhanced myelin sheath formation and oligodendrocyte (OL) maturation without affecting the number of OLs. Gastrodin markedly increased the phosphorylation levels of PI3K, AKT, and mTOR in primary cultured OLs via direct interaction with PI3K. Co-treatment with the PI3K inhibitor LY294002 (5 µM) mitigated gastrodin-induced OL maturation. Furthermore, injection of gastrodin (100 mg·kg(-1)·d(-1), i.p.) effectively facilitated remyelination in a lysophosphatidylcholine-induced demyelinating mouse model and alleviated demyelination in the experimental autoimmune encephalomyelitis mice. These results identify gastrodin as a promising therapeutic agent for demyelinating diseases and highlight the potential of the zebrafish model for screening pro-myelinogenic pharmacotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。