Ischemic stroke significantly contributes to global morbidity and disability through a cascade of neurological responses. Microglia, the immune modulators within the brain, exhibit dual roles in exacerbating and ameliorating ischemic injury through neuroinflammatory and neuroprotective roles, respectively. Despite emerging insights into microglia's role in neuronal support, the potential of epigenetic intervention to modulate microglial activity remains largely unexplored. We have previously shown that sodium butyrate, a histone deacetylase inhibitor (HDACi) epigenetically regulates the inflammatory response of microglia after ischemic stroke, and this study was aimed at characterizing the transcriptomic profiles of microglia and their spatial distribution in the stroke brain following HDACi administration. We hypothesized that the administration of HDACi epigenetically modulates microglial activation and a region-specific microglial phenotype in the stroke brain, shifting their phenotype from neurotoxic to neuroprotective and facilitating neuronal repair in the ischemic penumbra. Utilizing a rodent model of stroke, spatial transcriptomics and 3D morphometric reconstruction techniques were employed to investigate microglial responses in critical penumbral regions following HDACi administration. We found HDACi significantly altered the microglial transcriptomic landscape involving biological pathways of neuroinflammation, neuroprotection, and phagocytosis, as well as morphological phenotype, promoting a shift toward reparative, neurotrophic profiles within the ischemic penumbra. These changes were associated with enhanced neuronal survival and reduced neuroinflammation in specific regions in the ischemic brain. By elucidating the mechanisms through which HDACi influences microglial function, our findings propose therapeutic avenues for neuroprotection and rehabilitation in ischemic stroke, and possibly other neurodegenerative conditions that involve microglia-mediated neuroinflammation.
Spatial Transcriptomic Analysis Reveals HDAC Inhibition Modulates Microglial Dynamics to Protect Against Ischemic Stroke in Mice.
空间转录组分析揭示 HDAC 抑制调节小胶质细胞动力学,从而保护小鼠免受缺血性中风的侵害
阅读:6
作者:Jayaraj Kevin, Kumar Ritesh, Shyamasundar Sukanya, Arumugam Thiruma V, Polepalli Jai S, Dheen S Thameem
| 期刊: | Glia | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Sep;73(9):1817-1840 |
| doi: | 10.1002/glia.70035 | 研究方向: | 细胞生物学 |
| 疾病类型: | 中风 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
