Sulfidic toluene mineralization by aquifer microbial communities at different temperatures.

不同温度下含水层微生物群落对硫化甲苯的矿化作用

阅读:17
作者:Hudari Mohammad Sufian Bin, Vogt Carsten
High-temperature aquifer thermal energy storage (HT-ATES) is a carbon-neutral technology in the heating and cooling sector particularly suitable for urban areas, where aquifers are often contaminated with hydrocarbons. How HT-ATES could influence the natural degradation of contaminants such as hydrocarbons has hardly been investigated. Here, we determined the effects of temperature and temperature shifts on the capability of aquifer microbial communities to mineralize the model hydrocarbon toluene at sulfate-reducing conditions. Distinct toluene-mineralizing, sulfate-reducing consortia were enriched from material of two hydrocarbon-contaminated field sites at 12°C, 20°C, 25°C, 38°C, and 45°. Lowest toluene mineralization rates were observed at 38°C, and highest rates were observed at 45°C. Consortia adapted to 12°C or 25°C were generally negatively impacted by temporary or permanent temperature shifts to temperatures ≥ 38°C. Desulfosporosinus phylotypes dominated enrichments at 12°C, indicating a major role for toluene mineralization at in situ temperatures. At 20°C-25°C, typical sulfate-reducing genera such as Desulfoprunum, Desulfallas or Pelotomaculum were abundant, indicating synergistic relationships of various toluene degraders belonging to different taxa. The communities grown at 45°C were dominated by putative thermophilic phylotypes affiliated to the phyla Bacillota or Caldiserica. Overall, our data indicate that 45°C is the upper limit for anaerobic toluene mineralization of the investigated communities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。