BACKGROUND: Plants have evolved multiple strategies to cope with the ever-changing external environment. Autophagy, as one of the crucial mechanisms involved, has been demonstrated to play a pivotal role in plant responses and adaptation to abiotic stresses. However, the precise molecular mechanisms underlying the role of autophagy in mediating cold stress remain to be fully elucidated. RESULTS: In this study, we demonstrated that autophagy mutants presented increased freezing tolerance under both non-acclimated and cold-acclimated conditions in Arabidopsis. Autophagy positively regulates the expression of anthocyanin biosynthesis-related genes, thereby influencing anthocyanin accumulation in Arabidopsis under low-temperature conditions. Moreover, we found that cold stress directly suppresses the expression of autophagy-related genes and reduces autophagic flux in Arabidopsis. The RNA-seq data revealed that cold-responsive genes were pre-activated in the autophagy mutant atg13ab even before cold treatment. Additionally, we observed constitutive accumulation of the dehydrin protein COR47 in atg13ab mutant. CONCLUSIONS: Taken together, these data suggest that autophagy is a negative regulator of freezing tolerance in Arabidopsis.
Autophagy deficiency confers freezing tolerance in Arabidopsis thaliana.
自噬缺陷赋予拟南芥抗冻性
阅读:5
作者:Peng Yushi, Guo Shujuan, Lei Ben, Yu Linhui, Wang Qiuling
| 期刊: | BMC Plant Biology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 30; 25(1):994 |
| doi: | 10.1186/s12870-025-07066-9 | 研究方向: | 信号转导 |
| 信号通路: | Autophagy | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
