Enhancing the Bothropic Antivenom through a Reverse Antivenomics Approach.

通过反向抗蛇毒血清学方法增强矛头蝮蛇抗蛇毒血清的疗效

阅读:6
作者:Chiarelli Tassia, Hayashi Jackelinne Y, Galizio Nathalia da Costa, Casimiro Fernanda M S, Torquato Ricardo, Tanaka Aparecida S, Morais-Zani Karen de, Tanaka-Azevedo Anita M, Tashima Alexandre K
Antivenoms are the only effective treatment for snakebite envenomation and have saved countless lives over more than a century. Despite their value, antivenoms present risks of adverse reactions. Current formulations contain a fraction of nonspecific antibodies and serum proteins. While new promising candidates emerge as the next generation of antivenoms, it remains clear that animal-derived antivenoms will still play a critical role for years to come. In this study, we improved the bothropic antivenom (BAv), by capturing toxin-specific antibodies through affinity chromatography using immobilized Bothrops jararaca venom toxins. This process produced an improved antivenom (iBAv) enriched in neutralizing antibodies and depleted of serum proteins. Proteomic analysis showed that iBAv was 87% depleted in albumin and 37-83% lower in other serum proteins compared to BAv. Functional evaluation demonstrated that iBAv had a 2.9-fold higher affinity for venom toxins by surface plasmon resonance and a 2.8-fold lower ED50 in vivo, indicating enhanced potency. Our findings indicate that enriching specific antibodies while depleting serum proteins reduces the total protein dose required and increases the potency of antivenom. Although technical and economic considerations remain for large-scale implementation, this affinity-enriched antivenom represents a significant advancement in improving antivenom efficacy against B. jararaca envenomations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。