Characterization of the physical properties of tumor-derived spheroids reveals critical insights for pre-clinical studies.

对肿瘤衍生球体的物理特性进行表征,可为临床前研究提供关键见解

阅读:4
作者:Guillaume Ludivine, Rigal Lise, Fehrenbach Jérôme, Severac Childérick, Ducommun Bernard, Lobjois Valérie
Three-dimensional spheroids are widely used as cancer models to study tumor cell proliferation and to evaluate new anticancer drugs. Growth-induced stress (i.e., stress that persists in tumors after external loads removal) influences tumor growth and resistance to treatment. However, it is not clear whether spheroids recapitulate the tumor physical properties. Here, we demonstrated experimentally and with the support of mathematical models that, like tumors, spheroids accumulate growth-induced stress. Moreover, we found that this stress is lower in spheroids made of 5,000 cancer cells and grown for 2 days than in spheroids made of 500 cancer cells and grown for 6 days. These two culture conditions associated with different growth-induced stress levels also had different effects on the spheroid shape (using light sheet microscopy) and surface topography and stiffness (using scanning electron microscopy and atomic force microscopy). Finally, the response to irinotecan was different in the two spheroid types. Taken together, our findings bring new insights into the relationship between the spheroid physical properties and their resistance to antitumor treatment that should be taken into account by the experimenters when assessing new therapeutic agents using in vitro 3D models or when comparing studies from different laboratories.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。