Regulated exocytosis requires tight coupling of the membrane fusion machinery to a triggering signal and a fast response time. Complexins are part of this regulation and, together with synaptotagmins, control calcium-dependent exocytosis. Stimulatory and inhibitory functions have been reported for complexins. To test if complexins directly affect membrane fusion, we analyzed the 4 known mammalian complexin isoforms in a reconstituted fusion assay. In contrast to complexin III (CpxIII) and CpxIV, CpxI and CpxII stimulated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-pin assembly and membrane fusion. This stimulatory effect required a preincubation at low temperature and was specific for neuronal t-SNAREs. Stimulation of membrane fusion was lost when the carboxy-terminal domain of CpxI was deleted or serine 115, a putative phosphorylation site, was mutated. Transfer of the carboxy-terminal domain of CpxI to CpxIII resulted in a stimulatory CpxIII-I chimera. Thus, the carboxy-terminal domains of CpxI and CpxII promote the fusion of high-curvature liposomes.
The carboxy-terminal domain of complexin I stimulates liposome fusion.
复合物I的羧基末端结构域刺激脂质体融合
阅读:5
作者:Malsam Jörg, Seiler Florian, Schollmeier Yvette, Rusu Patricia, Krause Jean Michel, Söllner Thomas H
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2009 | 起止号: | 2009 Feb 10; 106(6):2001-6 |
| doi: | 10.1073/pnas.0812813106 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
