Composite Hydrogel Modulates Intrinsic Immune-Cascade Neovascularization for Ocular Surface Reconstruction after Corneal Chemical Injury

复合水凝胶调节内在免疫级联新生血管形成以实现角膜化学损伤后的眼表重建

阅读:3
作者:Jun Zhang, Kun Xi, Guohua Deng, Xi Zou, Peirong Lu

Abstract

Ocular alkali burns recruit neutrophils and triggers neutrophil extracellular trap (NET)-neovascularization cascade effects that limit ocular surface reconstruction and functional repair. However, effective inhibition of the release of neutrophil extracellular traps after a corneal chemical injury, coordination of intrinsic immunity with corneal repair, and exploration of more effective and non-invasive drug-delivery modes are still urgently needed. Using an in vitro coculture system, we found that an alkaline environment stimulates neutrophils to release NETs, which can be regulated by deoxyribonuclease I (DNase I). Inspired by this, we loaded DNase I, which effectively regulates NETs, onto chitosan nanoparticles and combined them with silk fibroin to construct a composite hydrogel that can sustainably regulate NETs. The hydrogel reduced neutrophil extracellular trap production by 50% and neovascularization by approximately 70% through sustained DNase I release after a corneal alkali burn. The complex hydrogel promotes ocular surface reconstruction by modulating the intrinsic immune-cascade neovascularization effect, providing a new research basis for the construction of nanobiomaterials that modulate pathological neovascularization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。