The Entropy Gain of Linear Systems and Some of Its Implications.

线性系统的熵增益及其一些意义

阅读:8
作者:Derpich Milan S, Müller Matias, Østergaard Jan
We study the increase in per-sample differential entropy rate of random sequences and processes after being passed through a non minimum-phase (NMP) discrete-time, linear time-invariant (LTI) filter G. For LTI discrete-time filters and random processes, it has long been established by Theorem 14 in Shannon's seminal paper that this entropy gain, G(G), equals the integral of log|G(ejω)|. In this note, we first show that Shannon's Theorem 14 does not hold in general. Then, we prove that, when comparing the input differential entropy to that of the entire (longer) output of G, the entropy gain equals G(G). We show that the entropy gain between equal-length input and output sequences is upper bounded by G(G) and arises if and only if there exists an output additive disturbance with finite differential entropy (no matter how small) or a random initial state. Unlike what happens with linear maps, the entropy gain in this case depends on the distribution of all the signals involved. We illustrate some of the consequences of these results by presenting their implications in three different problems. Specifically: conditions for equality in an information inequality of importance in networked control problems; extending to a much broader class of sources the existing results on the rate-distortion function for non-stationary Gaussian sources, and an observation on the capacity of auto-regressive Gaussian channels with feedback.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。