Clinical management of Staphylococcus aureus infections presents a challenge due to the high incidence, considerable virulence, and emergence of drug resistance mechanisms. The treatment of drug-resistant strains, such as methicillin-resistant S. aureus (MRSA), is further complicated by the development of tolerance and persistence to antimicrobial agents in clinical use. To address these challenges, membrane disruptors, that are not generally considered during drug discovery for agents against S. aureus, should be explored. The cell membrane protects S. aureus from external stresses and antimicrobial agents, but membrane-targeting antimicrobial agents are probably less likely to promote bacterial resistance. Nontypical linear cationic antimicrobial peptides (AMPs), highly modified AMPs such as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gramicidin S (cyclic peptide), are currently in clinical use. Recent studies have demonstrated that AMPs and small molecules can penetrate the cell membrane of S. aureus, inhibit phospholipid biosynthesis, or block the passage of solutes between the periplasm and the exterior of the cell. In addition to their primary mechanism of action (MOA) that targets the bacterial membrane, AMPs and small molecules may also impact bacteria through secondary mechanisms such as targeting the biofilm, and downregulating virulence genes of S. aureus. In this review, we discuss the current state of research into cell membrane-targeting AMPs and small molecules and their potential mechanisms of action against drug-resistant physiological forms of S. aureus, including persister cells and biofilms.
Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus.
靶向金黄色葡萄球菌细胞膜的抗菌肽和小分子
阅读:8
作者:Ganesan Narchonai, Mishra Biswajit, Felix LewisOscar, Mylonakis Eleftherios
| 期刊: | Microbiology and Molecular Biology Reviews | 影响因子: | 7.800 |
| 时间: | 2023 | 起止号: | 2023 Jun 28; 87(2):e0003722 |
| doi: | 10.1128/mmbr.00037-22 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
