Studying the Role of Myenteric Amyloidosis in Gastrointestinal Dysmotility and Enteric Neural Dysfunction Using APP/PS1 Mice-Is It an Adequate Animal Model?

利用 APP/PS1 小鼠研究肠肌淀粉样变性在胃肠动力障碍和肠神经功能障碍中的作用——这是一个合适的动物模型吗?

阅读:8
作者:Fernandes Roxanne, Masino Marlene, Flood Emma, Lansdell Theresa A, Srikrishna Nikitha, Mui Ryan, Dorrance Anne M, Galligan James J, Xu Hui
BACKGROUND: The Gastrointestinal (GI) microbiome and gut-brain axis are associated with the progression and pathology of Alzheimer's disease (AD). Amyloid deposition is thought to be a driver of AD, causing synaptic dysfunction and neuronal death in the brain. Chronic constipation is a common gastrointestinal (GI) dysmotility in AD patients, which impacts patient outcomes and quality of life. It is unknown if enteric amyloidosis disrupts myenteric neuron function and causes GI dysmotility. METHODS: Untreated male and female APP/PS1 (a transgenic murine model of brain amyloidosis) and sex-matched control mice were followed until 12 months of age. A separate cohort of mice was treated with a vehicle or the beta-secretase (BACE1) inhibitor, lanabecestat, starting at 5 months of age until 7 months. GI motility was assessed in all mice by measuring whole GI transit in vivo. Propulsive colonic motility and GI smooth muscle contractions were measured ex vivo. At 7 or 12 months old, amyloidosis in the brain and myenteric plexus was determined by immunohistochemistry or ELISA; the myenteric neural density, including the cholinergic and nitrergic neurons, was evaluated by immune staining and RT-PCR; expression of pro-inflammatory factors in the GI wall was assessed by RT-PCR. KEY RESULTS: By 7 months of age, male and female APP/PS1 mice developed abundant amyloid plaques in the brain. Aged untreated male APP/PS1 mice also demonstrated Aβ deposition in the colonic myenteric ganglia, which was associated with increased fecal output and faster whole GI transit starting at 4-7 months old, but vehicle- and lanabecestat-treated male APP/PS1 mice had similar GI motility to their non-genetic controls until 7 months old. None of the female APP/PS1 mice showed GI dysmotility or myenteric amyloidosis. Two months of lanabecestat treatment effectively reduced amyloid plaque burden in the brains of female APP/PS1 mice but not in male APP/PS1 mice. Treatment with lanabecestat did not affect myenteric Aβ intensity or GI motility in all APP/PS1 mice. All APP/PS1 mice did not show myenteric neuronal degeneration or inflammation until 12 months old. CONCLUSIONS: APP/PS1 mice do not recapitulate myenteric amyloidosis persistently and lack the phenotype of constipation observed in human AD patients; these mice should not be considered an adequate murine model for studying the role of myenteric amyloidosis in GI dysmotility. An adequate animal model with myenteric amyloidosis is required for further study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。