Appraising the bandgap energy of materials is a major issue in the field of band engineering. To better understand the behavior of GaAs(1-u)N(u) material, it is necessary to improve the applied calculation methodologies. The band anticrossing model (BAC) allows modeling of the bandgap energy when diluted nitrogen is incorporated into the material. The model can be improved using artificial neural networks (ANN) as an alternative solution, which is rarely applied. Our goal is to study the efficiency of the (ANN) method to gauge the bandgap energy of the material from experimental measurements, considering the extensive strain due to the lattice mismatch between the substrate and the material. This makes the GaAsN material controllable with (ANN) method, and is a potential candidate for the fabrication of ultrafast optical sensors.
Bandgap energy modeling of the deformed ternary GaAs(1-u)N(u) by artificial neural networks.
利用人工神经网络对变形三元 GaAs(1-u)N(u) 的带隙能量进行建模
阅读:4
作者:Tarbi A, Chtouki T, Elkouari Y, Erguig H, Migalska-Zalas A, Aissat A
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022 Aug 13; 8(8):e10212 |
| doi: | 10.1016/j.heliyon.2022.e10212 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
