Enhancing Antimicrobial Peptides from Frog Skin: A Rational Approach.

增强蛙皮抗菌肽:一种合理的方法

阅读:4
作者:Aguilar Silvana, Moreira Daniel, Pereira Lourenço Ana Laura, Wilke Natalia, Crosio Matías A, Vasconcelos Andreanne, Barbosa Eder Alves, Bispo Elizabete C I, Saldanha-Araujo Felipe, Ramada Marcelo H S, Escobar Franco M, Torres Cristina V, Leite José R S A, Marani Mariela M
Antimicrobial resistance is a global health threat, which has been worsened by the slow development of new antibiotics. The rational design of natural-derived antimicrobial peptides (AMPs) offers a promising alternative for enhancing the efficacy of AMPs and accelerating drug discovery. This paper describes the rational design of improved peptide derivatives starting from hylin-Pul3, a peptide previously isolated from the frog Boana pulchella, by optimizing its hydrophobicity, cationicity, and amphipathicity. In silico screening identified six promising candidates: dHP3-31, dHP3-50, dHP3-50.137, dHP3-50.190, dHP3-84, and dHP3-84.39. These derivatives exhibited enhanced activity against Gram-negative bacteria, emphasizing the role of cationicity and the strategic arginine incorporation. Hemolytic assays revealed the derivatives' improved selectivity, particularly for the derivatives with "imperfect amphipathicity". In fibroblast assays, dHP3-84 was well-tolerated, while dHP3-84.39 promoted cell proliferation. Antioxidant assays (ABTS assays) highlighted the Trp-containing derivatives' (dHP3-50.137, dHP3-31) significant activity. The lipid membrane interaction studies showed that hylin-Pul3 disrupts membranes directly, while dHP3-84.39, dHP3-50, and dHP3-50.137 promote vesicle aggregation. Conversely, dHP3-84 did not induce membrane disruption or aggregation, suggesting an intracellular mode of action. Machine learning models were effective in predicting bioactivity, as these predicted AMPs showed enhanced selectivity and potency. Among them, dHP3-84 demonstrated broad-spectrum potential. These findings highlight the value of rational design, in silico screening, and structure-activity studies in optimizing AMPs for therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。