Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device.
Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.
利用介电泳技术,通过全细胞膜电容分离神经干细胞
阅读:5
作者:Adams Tayloria N G, Jiang Alan Y L, Vyas Prema D, Flanagan Lisa A
| 期刊: | Methods | 影响因子: | 4.300 |
| 时间: | 2018 | 起止号: | 2018 Jan 15; 133:91-103 |
| doi: | 10.1016/j.ymeth.2017.08.016 | 研究方向: | 发育与干细胞、神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
