Increased nitric oxide-mediated vasodilation of bone resistance arteries is associated with increased trabecular bone volume after endurance training in rats.

大鼠耐力训练后,骨阻力动脉中一氧化氮介导的血管舒张增加与小梁骨体积增加有关

阅读:9
作者:Dominguez James M 2nd, Prisby Rhonda D, Muller-Delp Judy M, Allen Matthew R, Delp Michael D
Old age-associated osteoporosis is related to diminished bone blood flow and impaired nitric oxide (NO)-mediated vasodilation of the bone vasculature. Endurance exercise training restores the age-associated reduction of vasodilation in numerous vascular beds, as well as improving bone properties. The purpose of this study was to determine whether functional improvements in the bone vasculature are associated with increased bone properties after an endurance training intervention. Young adult (4-6 months) and old (24-26 months) male Fischer-344 rats remained sedentary or were trained (15 m/min walking, 15 degrees incline, 5 days/week, 10-12 weeks). Endothelium-dependent vasodilation of the femoral principal nutrient artery (PNA) was assessed in vitro using acetylcholine (ACh) and inhibitors of NO synthase (NOS) and cyclooxygenase (COX). PNA endothelium-dependent vasodilation was greater after training by 16% in young and by 24% in old animals. The NOS-mediated contribution to endothelium-dependent vasodilation was enhanced by 77% after training in old rats. Distal femur trabecular bone volume (BV/TV, %) was lower with old age in sedentary animals (young: 27+/-2%, old: 23+/-1%; P<0.05). Exercise-induced elevations in bone and marrow blood flow and the NOS signaling pathway were associated with greater BV/TV (young trained: 34+/-2%, old trained: 26+/-1%; P<0.05) relative to sedentary groups. These data demonstrate that training-induced increases in bone properties are associated with enhanced endothelium-dependent vasodilation through a NOS signaling pathway in the bone vasculature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。