Starvation is life-threatening and therefore strongly modulates many aspects of animal behavior and physiology [1]. In mammals, hunger causes a reduction in body temperature and metabolism [2], resulting in conservation of energy for survival. However, the molecular basis of the modulation of thermoregulation by starvation remains largely unclear. Whereas mammals control their body temperature internally, small ectotherms, such as Drosophila, set their body temperature by selecting an ideal environmental temperature through temperature preference behaviors [3, 4]. Here, we demonstrate in Drosophila that starvation results in a lower preferred temperature, which parallels the reduction in body temperature in mammals. The insulin/insulin-like growth factor (IGF) signaling (IIS) pathway is involved in starvation-induced behaviors and physiology and is well conserved in vertebrates and invertebrates [5-7]. We show that insulin-like peptide 6 (Ilp6) in the fat body (fly liver and adipose tissues) is responsible for the starvation-induced reduction in preferred temperature (T(p)). Temperature preference behavior is controlled by the anterior cells (ACs), which respond to warm temperatures via transient receptor potential A1 (TrpA1) [4]. We demonstrate that starvation decreases the responding temperature of ACs via insulin signaling, resulting in a lower T(p) than in nutrient-rich conditions. Thus, we show that hunger information is conveyed from fat tissues via Ilp6 and influences the sensitivity of warm-sensing neurons in the brain, resulting in a lower temperature set point. Because starvation commonly results in a lower body temperature in both flies and mammals, we propose that insulin signaling is an ancient mediator of starvation-induced thermoregulation.
Feeding-State-Dependent Modulation of Temperature Preference Requires Insulin Signaling in Drosophila Warm-Sensing Neurons.
果蝇温度感知神经元中胰岛素信号传导依赖于进食状态对温度偏好的调节
阅读:4
作者:Umezaki Yujiro, Hayley Sean E, Chu Michelle L, Seo Hanna W, Shah Prasun, Hamada Fumika N
| 期刊: | Current Biology | 影响因子: | 7.500 |
| 时间: | 2018 | 起止号: | 2018 Mar 5; 28(5):779-787 |
| doi: | 10.1016/j.cub.2018.01.060 | 种属: | Drosophila |
| 研究方向: | 信号转导、神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
