Medullary serotonin neurons are CO2 sensitive in situ.

延髓血清素神经元在原位对二氧化碳敏感

阅读:9
作者:Iceman Kimberly E, Richerson George B, Harris Michael B
Brainstem central chemoreceptors are critical to the hypercapnic ventilatory response, but their location and identity are poorly understood. When studied in vitro, serotonin-synthesizing (5-HT) neurons within the rat medullary raphé are intrinsically stimulated by CO2/acidosis. The contributions of these neurons to central chemosensitivity in vivo, however, are controversial. Lacking is documentation of CO2-sensitive 5-HT neurons in intact experimental preparations and understanding of their spatial and proportional distribution. Here we test the hypothesis that 5-HT neurons in the rat medullary raphé are sensitive to arterial hypercapnia. We use extracellular recording and hypercapnic challenge of spontaneously active medullary raphé neurons in the unanesthetized in situ perfused decerebrate brainstem preparation to assess chemosensitivity of individual cells. Juxtacellular labeling of a subset of recorded neurons and subsequent immunohistochemistry for the 5-HT-synthesizing enzyme tryptophan hydroxylase (TPH) identify or exclude this neurotransmitter phenotype in electrophysiologically characterized chemosensitive and insensitive cells. We show that the medullary raphé houses a heterogeneous population, including chemosensitive and insensitive 5-HT neurons. Of 124 recorded cells, 16 cells were juxtacellularly filled, visualized, and immunohistochemically identified as 5-HT synthesizing, based on TPH-immunoreactivity. Forty-four percent of 5-HT cells were CO2 stimulated (increased firing rate with hypercapnia), while 56% were unstimulated. Our results demonstrate that medullary raphé neurons are heterogeneous and clearly include a subset of 5-HT neurons that are excited by arterial hypercapnia. Together with data identifying intrinsically CO2-sensitive 5-HT neurons in vitro, these results support a role for such cells as central chemoreceptors in the intact system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。