Physiological mechanical forces accelerate the degradation of bovine lung collagen fibers by bacterial collagenase.

生理机械力会加速细菌胶原酶对牛肺胶原纤维的降解

阅读:6
作者:Deng Yuqing, Herrmann Jacob, Wang Yu, Nguyen Minh, Hall Joseph K, Kim Jae Hun, Smith Michael L, Lutchen Kenneth R, Bartolák-Suki Elizabeth, Suki Béla
Collagen fibers, one of the key load-bearing components of the extracellular matrix, contribute significantly to tissue integrity through their mechanical properties of strain-dependent stiffening. This study investigated the effects of bacterial collagenase on the mechanical behavior of individual bovine lung collagen fibers in the presence or absence of mechanical forces, with a focus on potential implications for emphysema, a condition associated with collagen degradation and alveolar wall rupture. Tensile tests were conducted on individual collagen fibers isolated from bovine lung tissue. The rate of degradation was characterized by the change in fiber Young's modulus during 60 min of digestion under various mechanical conditions mimicking the mechanical stresses on the fibers during breathing. Compared to digestion without mechanical forces, a significantly larger drop of fiber modulus was observed in the presence of static or intermittent mechanical forces. Fiber yield stress was also reduced after digestion indicating compromised fiber failure. By incorporating fibril waviness obtained by scanning electron microscopic images, an analytic model allowed estimation of fibril modulus. A computational model that incorporated waviness and the results of tensile tests was also developed to simulate and interpret the data. The simulation results provided insights into the mechanical consequences of bacterial collagenase and mechanical forces on collagen fibers, revealing both fibril softening and rupture during digestion. These findings shed light on the microscale changes in collagen fiber structure and mechanics under enzymatic digestion and breathing-like mechanical stresses with implications for diseases that are impacted by collagen degradation such as emphysema.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。