Sustained tenascin-C expression drives neointimal hyperplasia and promotes aortocaval fistula failure.

持续的腱生蛋白-C表达驱动新生内膜增生,并促进主动脉腔静脉瘘失败

阅读:7
作者:Gonzalez Luis A, Zhang Weichang, Bai Hualong, Taniguchi Ryosuke, Ramachandra Abhay B, Jovin Daniel G, Ohashi Yuichi, Nguyen Mytien, Thaxton Carly, Yatsula Bogdan, Vazquez-Padron Roberto I, Humphrey Jay D, Martin Kathleen A, Kyriakides Themis R, Dardik Alan
End-stage kidney disease (ESKD) impacts over 740,000 individuals in the United States, with many patients relying on arteriovenous fistulae (AVF) for hemodialysis due to superior patency and reduced infections. However, AVF patency is reduced by thrombosis and neointimal hyperplasia, yielding a 1-yr patency of only 40%-50%. We hypothesized that tenascin-C (TNC), a regulator of inflammation and immune responses after injury, also regulates venous remodeling during AVF maturation. AVF were created in wild-type (WT) and Tnc knockout (Tnc(-/-)) mice, and proteomic analyses were conducted to identify protein changes between sham and AVF WT tissue. Immunofluorescence and Western blot assays compared venous tissue from WT and Tnc(-/-) mice. In vitro studies using human umbilical vein endothelial cells and human umbilical vein smooth muscle cells examined TNC-siRNA effects on thrombomodulin (THBD) and NF-κB. Macrophages from WT and Tnc(-/-) mice were assessed for anti-inflammatory phenotype polarization and tissue factor expression. TNC expression was spatially and temporally regulated in WT mice with AVF, and TNC colocalized with matrix remodeling but not with THBD expression; TNC expression was downregulated in patent AVF but sustained in occluded AVF, both in WT mice and human AVF specimens. Tnc(-/-) mice had reduced AVF patency, less wall thickening, and increased thrombosis, with increased THBD expression. In vitro, TNC-siRNA increased THBD and reduced NF-κB activation. Macrophages from Tnc(-/-) mice showed increased anti-inflammatory macrophage polarization and tissue factor expression, facilitating thrombosis. Sustained TNC expression drives neointimal hyperplasia and AVF failure by promoting a prothrombotic, inflammatory microenvironment. Targeting TNC pathways may enhance AVF patency and improve dialysis outcomes.NEW & NOTEWORTHY This study identifies Tenascin-C (TNC) as a key regulator of arteriovenous fistula (AVF) patency. TNC is spatially and temporally regulated, driving neointimal hyperplasia and thrombosis by promoting a prothrombotic, inflammatory microenvironment. In Tnc(-/-) mice, reduced TNC expression increased thrombomodulin and anti-inflammatory macrophage polarization but impaired wall thickening and AVF patency. These findings link sustained TNC expression to AVF failure and suggest that targeting TNC pathways could enhance AVF outcomes in patients requiring hemodialysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。