Pulmonary hypertension (PH) is an incurable disease that often leads to right ventricular hypertrophy and right heart failure. This study investigated single versus combined therapy with sildenafil and erythropoietin on hypoxia-induced pulmonary hypertension in mice. Mice were randomized into 5 groups and exposed to either hypoxia (10% oxygen) or normoxia for a total of 5 weeks. Hypoxic mice were treated with saline solution, erythropoietin (500 IU/kg 3 times weekly), sildenafil (10 mg/kg daily), or a combination of the two drugs for the last 2 weeks of hypoxic exposure. We measured right ventricular pressures using right heart catheterization, and the ventilatory response to hypoxia was recorded via whole-body plethysmography. Histological analyses were performed to elucidate changes in pulmonary morphology and appearance of right heart hypertrophy. Plasma levels of cardiotrophin-1 and atrial natriuretic peptide were quantified. Treatment with either erythropoietin or sildenafil alone lowered the hypoxia-induced increase of pulmonary pressure and reduced pulmonary edema formation, pulmonary vascular remodeling, and right ventricular hypertrophy. Notably, the combination of the two drugs had the most prominent effect. Changes in cardiotrophin-1 and atrial natriuretic protein levels confirmed these observations. The combination treatment with erythropoietin and sildenafil demonstrated an attenuation of the development of hypoxia-induced PH in mice that was superior to that observed for either drug when given alone.
Combination of erythropoietin and sildenafil can effectively attenuate hypoxia-induced pulmonary hypertension in mice.
红细胞生成素和西地那非联合使用可有效减轻小鼠缺氧性肺动脉高压
阅读:7
作者:Samillan Victor, Haider Thomas, Vogel Johannes, Leuenberger Caroline, Brock Matthias, Schwarzwald Colin, Gassmann Max, Ostergaard Louise
| 期刊: | Pulmonary Circulation | 影响因子: | 2.500 |
| 时间: | 2013 | 起止号: | 2013 Dec;3(4):898-907 |
| doi: | 10.1086/674758 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
