Optimizing drug design by merging generative AI with a physics-based active learning framework.

将生成式人工智能与基于物理的主动学习框架相结合,优化药物设计

阅读:7
作者:Filella-Merce Isaac, Molina Alexis, Díaz Lucía, Orzechowski Marek, Berchiche Yamina A, Zhu Yang Ming, Vilalta-Mor Júlia, Malo Laura, Yekkirala Ajay S, Ray Soumya, Guallar Victor
Machine learning is transforming drug discovery, with generative models (GMs) gaining attention for their ability to design molecules with specific properties. However, GMs often struggle with target engagement, synthetic accessibility, or generalization. To address these, we developed a GM workflow integrating a variational autoencoder with two nested active learning cycles. These iteratively refine their predictions using chemoinformatics and molecular modeling predictors. We tested our workflow on two systems, CDK2 and KRAS, successfully generating diverse, drug-like molecules with high predicted affinity and synthesis accessibility. Notably, we generated novel scaffolds distinct from those known for each target. For CDK2, we synthetized 9 molecules yielding 8 with in vitro activity, including one with nanomolar potency. For KRAS, in silico methods validated by CDK2 assays identified 4 molecules with potential activity. These findings showcase our GM workflow's ability to explore novel chemical spaces tailored for specific targets, thereby opening new avenues in drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。