Biogenic hydroxyapatite is known for its osteoinductive potential due to its similarity to human bone and biocompatibility, but insufficient vascularization compared to autogenous bone during early implantation limits bone integration and osteogenesis. Fluorine has been shown to improve hydroxyapatite's mechanical properties and the coupling of osteogenic and angiogenic cells. In this study, fluorine-modified biogenic hydroxyapatite (FPHA) with varying fluorine concentrations was prepared and tested for its ability to promote vascularized osteogenesis. FPHA prepared in this study retained the natural porous structure of biological cancellous bone and released F(-) ions when immersed in cell culture medium. The extraction solutions of FPHA0.25 and FPHA0.50 promoted the formation of capillary-like tubes by human umbilical vein endothelial cells (HUVECs), with FPHA0.25 significantly upregulating vegf mRNA and VEGF protein levels in co-cultured human bone marrow mesenchymal stem cells (HBMSCs). Additionally, FPHA0.25 and FPHA0.50 upregulated pdgf-bb mRNA and PDGF-BB protein levels in HUVECs. In vivo experiments using a rabbit cranial defect model demonstrated that FPHA0.25 promoted early bone formation and angiogenesis in the defect area, enhanced VEGF secretion, and increased PDGFR-β expression in endothelial and mesenchymal cells. These findings suggest that fluorine-modified biogenic hydroxyapatite with an optimal fluorine concentration (FPHA0.25) may offer a promising strategy to enhance the body's innate bone-healing potential by accelerating vascularization.
Fluorinated Porcine Bone-Derived Hydroxyapatite Promotes Vascularized Osteogenesis by Coordinating Human Bone Marrow Mesenchymal Stem Cell/Human Umbilical Vein Endothelial Cell Complexes.
氟化猪骨衍生的羟基磷灰石通过协调人类骨髓间充质干细胞/人类脐静脉内皮细胞复合物促进血管化骨生成
阅读:8
作者:Wu Xiayi, Xu Chunxin, Feng Junming, Wu Shiyu, Liu Runheng, Qiao Wei, Luo Xin, Chen Shoucheng, Li Zhipeng, Chen Zhuofan
| 期刊: | Bioengineering-Basel | 影响因子: | 3.800 |
| 时间: | 2024 | 起止号: | 2024 Dec 18; 11(12):1287 |
| doi: | 10.3390/bioengineering11121287 | 种属: | Human、Porcine |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
