BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive histological subtype with limited treatment options and very poor prognosis following progression after standard chemotherapeutic regimens. Therefore, novel molecules and therapeutic options are urgently needed for this category of patients. Recently, we have identified PAC as a curcumin analogue with potent anti-cancer features. METHODS: HPLC was used to evaluate the stability of PAC and curcumin in PBS and also in circulating blood. Cytotoxicity/apoptosis was assessed in different breast cancer cell lines using propidium iodide/annexinV associated with flow cytometry. Furthermore, immunoblotting analysis determined the effects of PAC on different oncogenic proteins and pathways. Additionally, the real time xCELLigence RTCA technology was applied to investigate the effect of PAC on the cellular proliferation, migration and invasion capacities. RESULTS: PAC is more stable than curcumin in PBS and in circulating blood. Furthermore, we have shown differential sensitivity of estrogen receptor-alfa positive (ERα(+)) and estrogen receptor alfa negative (ERα(-)) breast cancer cells to PAC, which down-regulated ERα in both cell types. This led to complete disappearance of ERα in ERα(-) cells, which express very low level of this receptor. Interestingly, specific down-regulation of ERα in receptor positive cells increased the apoptotic response of these cells to PAC, confirming that ERα inhibits PAC-dependent induction of apoptosis, which could be mediated through ERα down-regulation. Additionally, PAC inhibited the proliferation and suppressed the epithelial-to-mesenchymal transition process in breast cancer cells, with higher efficiency on the TNBC subtype. This effect was also observed in vivo on tumor xenografts. Additionally, PAC suppressed the expression/secretion of 2 important cytokines IL-6 and MCP-1, and consequently inhibited the paracrine procarcinogenic effects of breast cancer cells on breast stromal fibroblasts. CONCLUSION: These results indicate that PAC could be considered as important candidate for future therapeutic options against the devastating TNBC subtype.
PAC down-regulates estrogen receptor alpha and suppresses epithelial-to-mesenchymal transition in breast cancer cells.
PAC 可下调雌激素受体 α,并抑制乳腺癌细胞的上皮间质转化
阅读:5
作者:Al-Howail Huda A, Hakami Hana A, Al-Otaibi Basem, Al-Mazrou Amer, Daghestani Maha H, Al-Jammaz Ibrahim, Al-Khalaf Huda H, Aboussekhra Abdelilah
| 期刊: | BMC Cancer | 影响因子: | 3.400 |
| 时间: | 2016 | 起止号: | 2016 Jul 27; 16:540 |
| doi: | 10.1186/s12885-016-2583-8 | 研究方向: | 细胞生物学 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
