The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT), and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP) is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1alpha (HIF-1alpha) induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1alpha was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1alpha and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis.
Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis.
SLUG 对膜型 4 基质金属蛋白酶的调控促进缺氧介导的转移
阅读:6
作者:Huang Chi-Hung, Yang Wen-Hao, Chang Shyue-Yih, Tai Shyh-Kuan, Tzeng Cheng-Hwei, Kao Jung-Yie, Wu Kou-Juey, Yang Muh-Hwa
| 期刊: | Neoplasia | 影响因子: | 7.700 |
| 时间: | 2009 | 起止号: | 2009 Dec;11(12):1371-82 |
| doi: | 10.1593/neo.91326 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
