MYC is a key oncogenic driver frequently overexpressed in non-small cell lung carcinoma (NSCLC) and other cancers, where its protein levels often exceed what would be expected from MYC mRNA levels alone, suggesting post-transcriptional regulation. Strategies to inhibit MYC function by targeting mRNA translation hold potential for therapeutics utility in Myc-dependent cancers. We developed TranslationLight, a high-content imaging platform which detects MYC mRNA translation in human cells. Using this system, we conducted a high-throughput screen of ~100,000 compounds to identify small molecules that selectively modulate MYC translation. Candidate compounds were evaluated by immunofluorescence, ribosome profiling, RNA sequencing, cellular thermal shift assays (CETSA), and subcellular localization studies of mRNA and RNA-binding proteins. We identified a lead compound, CMP76, that potently reduces Myc protein without substantially decreasing its mRNA abundance. Mechanistic investigations showed that the compound induces relocalization of MYC mRNA into stress granules, accompanied by translational silencing. CETSA identified hnRNPK as a primary protein target, and compound treatment triggered its cytoplasmic relocalization together with formation of hnRNPK-containing granules colocalizing with MYC mRNA. Analysis across cancer cell lines revealed that sensitivity to CMP76 was significantly associated with RBM42 dependency. This work establishes a novel therapeutic strategy to inhibit MYC translation mediated by hnRNPK, offering a translationally targeted approach to cancer therapy.
Discovery of Small Molecules That Inhibit MYC mRNA Translation Through hnRNPK and Induction of Stress Granule-Mediated mRNA Relocalization.
发现通过 hnRNPK 抑制 MYC mRNA 翻译并诱导应激颗粒介导的 mRNA 重定位的小分子
阅读:9
作者:Sheinberger Yoni, Wassermann Rina, Khier Jasmine, Kassa Ephrem, Vaturi Linoy, Slonim Naama, Tverskoi Artem, Mandaby Aviad, Demishtein Alik, Klepfish Mordehay, Shapira-Lots Inbal, Alroy Iris
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 22; 26(17):8139 |
| doi: | 10.3390/ijms26178139 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
