First site-specific conjugation method for native goat IgG antibodies via glycan remodeling at the conserved Fc region.

第一个通过保守的 Fc 区糖基化重塑对天然山羊 IgG 抗体进行位点特异性偶联的方法

阅读:7
作者:Dolan Michael E, Sadiki Amissi, Wang Leo Lei, Wang Yan, Barton Christopher, Oppenheim Sheldon F, Zhou Zhaohui Sunny
Despite their triumph in treating human diseases, antibody therapies for animals have gained momentum more slowly. However, the first approvals of animal antibodies for osteoarthritic pain in cats and dogs may herald the dawn of a new era. For example, goats are vital to economies around the world for their milk, meat, and hide products. It is therefore imperative to develop therapies to safeguard goats-with antibodies at the forefront. Goat antibodies will be crucial in the development of therapeutic antibodies, for example, as tracers to study antibody distribution in vivo, reagents to develop other therapeutic antibodies, and therapeutic agents themselves (e.g., antibody-drug conjugates). Hamstringing this effort is a still-burgeoning understanding of goat antibodies and their derivatization. Historically, goat antibody conjugates were generated through stochastic chemical modifications, producing numerous attachment sites and modification ratios, thereby deleteriously impacting antigen binding. Site-specific methods exist but often require substantial engineering and have not been demonstrated with goat antibodies. Nevertheless, we present herein a novel method to site-specifically conjugate native goat antibodies: chemo-enzymatic remodeling of the native Fc N-glycan introduces a reactive azide handle, after which click chemistry with strained alkyne partners affords homogeneous conjugates labeled only on the Fc domain. This process is robust, and resulting conjugates retain their antigen binding and specificity. To our knowledge, our report is the first for site-specific conjugation of native goat antibodies. Furthermore, our approach should be applicable to other animal antibodies-even with limited structural information-with similar success.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。