Sustained Vascular Inflammatory Effects of SARS-CoV-2 Spike Protein on Human Endothelial Cells

SARS-CoV-2刺突蛋白对人内皮细胞的持续性血管炎症效应

阅读:3
作者:Mitra Gultom ,Lin Lin ,Camilla Blunk Brandt ,Anastasia Milusev ,Alain Despont ,Jane Shaw ,Yvonne Döring ,Yonglun Luo ,Robert Rieben

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with systemic inflammation and vascular injury, which contribute to the development of acute respiratory syndrome (ARDS) and the mortality of COVID-19 infection. Moreover, multiorgan complications due to persistent endothelial dysfunction have been suspected as the cause of post-acute sequelae of SARS-CoV-2 infection. Therefore, elucidation of the vascular inflammatory effect of SARS-CoV-2 will increase our understanding of how endothelial cells (ECs) contribute to the short- and long-term consequences of SARS-CoV-2 infection. Here, we investigated the interaction of SARS-CoV-2 spike protein with human ECs from aortic (HAoEC) and pulmonary microvascular (HPMC) origins, cultured under physiological flow conditions. We showed that the SARS-CoV-2 spike protein triggers prolonged expression of cell adhesion markers in both ECs, similar to the effect of TNF-α. SARS-CoV-2 spike treatment also led to the release of various cytokines and chemokines observed in severe COVID-19 patients. Moreover, increased binding of leucocytes to the endothelial surface and a procoagulant state of the endothelium were observed. Transcriptomic profiles of SARS-CoV-2 spike-activated HPMC and HAoEC showed prolonged upregulation of genes and pathways associated with responses to virus, cytokine-mediated signaling, pattern recognition, as well as complement and coagulation pathways. Our findings support experimental and clinical observations of the vascular consequences of SARS-CoV-2 infection and highlight the importance of EC protection as one of the strategies to mitigate the severe effects as well as the possible post-acute complications of COVID-19 disease. Keywords: Endothelial cells; SARS-CoV-2; Spike protein; Vascular inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。