Optimizing linker rigidity to improve intracellular behavior of PROTACs targeting hematopoietic prostaglandin D synthase.

优化连接子刚性以改善靶向造血前列腺素 D 合成酶的 PROTAC 的细胞内行为

阅读:6
作者:Osawa Hinata, Saito Kosuke, Demizu Yosuke
Proteolysis-targeting chimeras (PROTACs) are emerging as powerful tools for targeted protein degradation. Among the key factors influencing their efficacy, linker design plays a critical role by affecting membrane permeability, ternary complex formation, and degradation potency. In this study, we conducted a comparative analysis of three novel PROTACs targeting hematopoietic prostaglandin D synthase (H-PGDS), each incorporating linkers with distinct degrees of rigidity-including methylene modifications and spirocyclic structures. Although all compounds exhibited similar binding affinities and degradation activities, the most rigid derivative (PROTAC-3) showed markedly higher intracellular accumulation but formed the least stable ternary complex. These results reveal a trade-off between cell permeability and complex stability, emphasizing the importance of comprehensive linker optimization. Our findings highlight the value of integrating conformational rigidity and spatial design in the rational development of next-generation PROTACs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。