Alphavirus infections cause multiple alterations in the intracellular environment that can have both positive and negative effects on viral replication. The Old World alphaviruses, such as Sindbis (SINV), chikungunya (CHIKV), and Semliki Forest viruses, hinder the ability of vertebrate cells to form stress granules (SGs). Previously, this inhibitory function was attributed to the hypervariable domain (HVD) of nsP3, which sequesters the key components of SGs, G3BP1 and G3BP2, and to the nsP3 macro domain. The macro domain possesses ADP-ribosylhydrolase activity, which can diminish the ADP-ribosylation of G3BP1 during viral replication. However, our recent findings do not support the prevailing notions. We demonstrate that the interactions between SINV- or CHIKV-specific nsP3s and G3BPs, and the ADP-ribosylhydrolase activity are not major contributors to the inhibitory process, at least when nsP3 is expressed at biologically relevant levels. Instead, the primary factors responsible for suppressing SG formation are virus-induced transcriptional and translational shutoffs that rapidly develop within the first few hours post infection. Poorly replicating SINV variants carrying mutated nsP3 HVD still inhibit SG development even in the presence of NaAs. Conversely, SINV mutants lacking transcription and/or translation inhibitory functions lose their ability to inhibit SGs, despite expressing high levels of wt nsP3. Moreover, we found that stable cell lines expressing GFP-nsP3 fusions retain the capacity to form SGs when exposed to sodium arsenite. However, our results do not rule out a possibility that additional virus-induced changes in cell biology may contribute to the suppression of SG formation.
Alphavirus-induced transcriptional and translational shutoffs play major roles in blocking the formation of stress granules.
甲病毒诱导的转录和翻译关闭在阻止应激颗粒的形成中起着重要作用
阅读:4
作者:Palchevska Oksana, Dominguez Francisco, Frolova Elena I, Frolov Ilya
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Jul 5 |
| doi: | 10.1101/2023.07.05.547824 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
