Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC(50) 7.57 ± 0.2 µM) and PC-3 cells (EC(50) 7.80 ± 0.7 µM) compared to curcumin (EC(50): DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.
Diarylpentanoid (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one) (MS13) Exhibits Anti-proliferative, Apoptosis Induction and Anti-migration Properties on Androgen-independent Human Prostate Cancer by Targeting Cell Cycle-Apoptosis and PI3K Signalling Pathways.
二芳基戊烷类化合物(1,5-双(4-羟基-3-甲氧基苯基)-1,4-戊二烯-3-酮)(MS13)通过靶向细胞周期-凋亡和PI3K信号通路,对雄激素非依赖性人类前列腺癌表现出抗增殖、诱导凋亡和抗迁移特性
阅读:7
作者:Abd Wahab Nurul Azwa, Abas Faridah, Othman Iekhsan, Naidu Rakesh
| 期刊: | Frontiers in Pharmacology | 影响因子: | 4.800 |
| 时间: | 2021 | 起止号: | 2021 Jul 20; 12:707335 |
| doi: | 10.3389/fphar.2021.707335 | 种属: | Human |
| 研究方向: | 信号转导、细胞生物学 | 疾病类型: | 前列腺癌 |
| 信号通路: | Apoptosis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
