Chemogenetic Activation of Mesoaccumbal Gamma-Aminobutyric Acid Projections Selectively Tunes Responses to Predictive Cues When Reward Value Is Abruptly Decreased.

当奖励价值突然降低时,中脑伏隔核γ-氨基丁酸投射的化学遗传激活可选择性地调节对预测线索的反应

阅读:8
作者:Wakabayashi Ken T, Feja Malte, Leigh Martin P K, Baindur Ajay N, Suarez Mauricio, Meyer Paul J, Bass Caroline E
BACKGROUND: Mesolimbic circuits regulate the attribution of motivational significance to incentive cues that predict reward, yet this network also plays a key role in adapting reward-seeking behavior when the contingencies linked to a cue unexpectedly change. Here, we asked whether mesoaccumbal GABA (gamma-aminobutyric acid) projections enhance adaptive responding to incentive cues of abruptly altered reward value, and whether these effects were distinct from global activation of all ventral tegmental area GABA circuits. METHODS: We used a viral targeting system to chemogenetically activate mesoaccumbal GABA projections in male rats during a novel cue-dependent operant value-shifting task, in which the volume of a sucrose reward associated with a predictive cue is suddenly altered, from the beginning and throughout the session. We compared the results with global activation of ventral tegmental area GABA neurons, which will activate local inhibitory circuits and long loop projections. RESULTS: We found that activation of mesoaccumbal GABA projections decreases responding to incentive cues associated with smaller-than-expected rewards. This tuning of behavioral responses was specific to cues associated with smaller-than-expected rewards but did not impact measures related to consuming the reward. In marked contrast, activating all ventral tegmental area GABA neurons resulted in a uniform decrease in responding to incentive cues irrespective of changes in the size of the reward. CONCLUSIONS: Targeted activation of mesoaccumbal GABA neurons facilitates adaptation in reward-seeking behaviors. This suggests that these projections may play a very specific role in associative learning processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。