The present study aimed to elucidate the roles and mechanisms of gene biomarkers associated with mitochondrial dysfunction in the progression of Type 2 diabetes mellitus (T2DM). It conducted an analysis of differentially expressed genes related to mitochondrial dysfunction in T2DM and employed bioinformatics approaches to predict potential target drugs for key biomarkers. Additionally, the present study used the EPIC algorithm to examine immune cell infiltration in T2DM. Furthermore, the singleâcell RNA sequencing dataset GSE221156 was analyzed to identify specific cell types involved in T2DM. The expression of biomarkers was investigated through cellular experiments to assess the effect of marker genes on macrophage polarization. A total of five biomarker genes associated with T2DM were identified, namely ERAP2, HLAâDQB1, HLAâDRB5, MAP1B and OAS3. The combined detection of these genes yielded a riskâpredictive area under the curve value of 0.833 for T2DM. These five marker genes may serve as potential targets for valproic acid (VPA). During the progression of T2DM, there is an increase in macrophage numbers, with these genes being highly expressed in macrophages. In a high glucoseâinduced RAW264.7 macrophage model, the expressions of MAP1B and OAS3 were upregulated. Notably, the knockdown of OAS3 markedly reduced M1 macrophage polarization, indicating OAS3 facilitates M1 macrophage polarization in a highâglucose environment. The downregulation of OAS3 expression attenuated M1 macrophage polarization by inhibiting mTORC activation. In conclusion, five candidate biomarkers for T2DM were identified that may serve as therapeutic targets for VPA and are associated with immune infiltration in T2DM. Among these, OAS3 enhances M1 macrophage polarization in a highâglucose environment by regulating the mTORC1 pathway.
Role and mechanism of mitochondrial dysfunctionârelated gene biomarkers in the progression of type 2 diabetes mellitus.
线粒体功能障碍相关基因生物标志物在2型糖尿病进展中的作用和机制
阅读:7
作者:Liu Mengxue, Qiao Hong
| 期刊: | Molecular Medicine Reports | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jun |
| doi: | 10.3892/mmr.2025.13523 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
