Rabies virus causes nearly 60,000 human deaths annually. Antibodies that target the rabies glycoprotein (G) are being developed as post-exposure prophylactics, but mutations in G can render such antibodies ineffective. Here, we use pseudovirus deep mutational scanning to measure how all single-amino-acid mutations to G affect cell entry and neutralization by a panel of antibodies. These measurements identify sites critical for G function and define constrained regions that are attractive epitopes for clinical antibodies, including at the apex and base of the protein. We provide complete maps of escape mutations for eight monoclonal antibodies, including some in clinical use or development. Escape mutations for most antibodies are present in some natural rabies strains. Overall, this work provides comprehensive information on the functional and antigenic effects of G mutations that can inform development of stabilized vaccine antigens and antibodies that are resilient to rabies genetic variation.
Deep mutational scanning of rabies glycoprotein defines mutational constraint and antibody-escape mutations.
对狂犬病糖蛋白进行深度突变扫描,确定突变限制和抗体逃逸突变
阅读:10
作者:Aditham Arjun K, Radford Caelan E, Carr Caleb R, Jasti Naveen, King Neil P, Bloom Jesse D
| 期刊: | Cell Host & Microbe | 影响因子: | 18.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 11; 33(6):988-1003 |
| doi: | 10.1016/j.chom.2025.04.018 | 研究方向: | 炎症/感染 |
| 疾病类型: | 狂犬病 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
