KRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS-mutant alleles in patients with cancer. We report that KRAS wild-type (WT)-amplified tumor models are sensitive to treatment with the small-molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the "OFF" state of KRAS and result in potent antitumor activity in preclinical models of cancers driven by KRAS-mutant proteins. In this study, we used the high-throughput cellular viability Profiling Relative Inhibition Simultaneously in Mixtures assay to assess the antiproliferative activity of BI-2493 in a 900+ cancer cell line panel, expanding on our previous work. KRAS WT-amplified cancer cell lines, with a copy number >7, were identified as the most sensitive, across cell lines with any KRAS alterations, to our pan-KRAS inhibitors. Importantly, our data suggest that a KRAS "OFF" inhibitor is better suited to treat KRAS WT-amplified tumors than a KRAS "ON" inhibitor. KRAS WT amplification is common in patients with gastroesophageal cancers in which it has been shown to act as a unique cancer driver with little overlap to other actionable mutations. The pan-KRAS inhibitors BI-2493 and BI-2865 show potent antitumor activity in vitro and in vivo in KRAS WT-amplified cell lines from this and other tumor types. In conclusion, this is the first study to demonstrate that direct pharmacologic inhibition of KRAS shows antitumor activity in preclinical models of cancer with KRAS WT amplification, suggesting a novel therapeutic concept for patients with cancers bearing this KRAS alteration.
Pan-KRAS Inhibitors BI-2493 and BI-2865 Display Potent Antitumor Activity in Tumors with KRAS Wild-type Allele Amplification.
泛KRAS抑制剂BI-2493和BI-2865在KRAS野生型等位基因扩增的肿瘤中显示出强大的抗肿瘤活性
阅读:24
作者:Tedeschi Antonio, Schischlik Fiorella, Rocchetti Francesca, Popow Johannes, Ebner Florian, Gerlach Daniel, Geyer Antonia, Santoro Valeria, Boghossian Andrew S, Rees Matthew G, Ronan Melissa M, Roth Jennifer A, Lipp Jesse, Samwer Matthias, Gmachl Michael, Kraut Norbert, Pearson Mark, Rudolph Dorothea
| 期刊: | Molecular Cancer Therapeutics | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 2; 24(4):550-562 |
| doi: | 10.1158/1535-7163.MCT-24-0386 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
