At the Nexus Between Epigenetics and Senescence: The Effects of Senolytic (BI01) Administration on DNA Methylation Clock Age and the Methylome in Aged and Regenerated Skeletal Muscle.

表观遗传学与衰老之间的联系:衰老细胞清除剂 (BI01) 给药对衰老和再生骨骼肌中 DNA 甲基化时钟年龄和甲基化组的影响

阅读:6
作者:Chambers Toby L, Wells Jaden, Koopmans Pieter Jan, Morena Francielly, Malik Zain B, Greene Nicholas P, Filareto Antonio, Franti Michael, Sini Patrizia, Weinstabl Harald, Brooke Robert T, MilčiÅ«tė Milda, Gordevičius Juozas, Horvath Steve, Wen Yuan, Dungan Cory M, Murach Kevin A
Senescent cells emerge with aging and injury. The contribution of senescent cells to DNA methylation age (DNAmAGE) in vivo is uncertain. Furthermore, stem cell therapy can mediate "rejuvenation", but how tissue regeneration controlled by resident stem cells affects whole tissue DNAmAGE is unclear. We assessed DNAmAGE with or without senolytics (BI01) in aged male mice (24-25 months) 35 days following muscle healing (BaCl(2)-induced regeneration versus non-injured). Young injured mice (5-6 months) without senolytics were comparators. DNAmAGE was decelerated by up to 68% after injury in aged muscle. DNAmAGE was modestly but further significantly decelerated by injury recovery with senolytics. ~1/4 of measured CpGs were altered by injury then recovery regardless of senolytics in aged muscle. Specific methylation changes caused by senolytics included differential regulation of Col, Hdac, Hox, and Wnt genes, which likely contributed to improved regeneration. Altered extracellular matrix remodeling using histological analysis aligned with the methylomic findings with senolytics. Without senolytics, regeneration had a contrasting effect in young mice and tended not to influence or modestly accelerate DNAmAGE. Comparing young to old injury recovery without senolytics using methylome-transcriptome integration, we found a more coordinated molecular profile in young and differential regulation of genes implicated in muscle stem cell performance: Axin2, Egr1, Fzd4, Meg3, and Spry1. Muscle injury and senescent cells affect DNAmAGE and aging influences the transcriptomic-methylomic landscape after resident stem cell-driven tissue reformation. Our data have implications for understanding muscle plasticity with aging and developing therapies aimed at collagen remodeling and senescence.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。