Derivation of cardiomyocyte-propelled motile aggregates from stem cells.

从干细胞衍生出心肌细胞驱动的运动聚集体

阅读:6
作者:Ho Christine, Glykofrydis Fokion, Godage Gaveen, Poon Kyle, Kunnan Minnal, Swedlund Benjamin, Murillo Sandra, Morsut Leonardo
Robotics draws inspiration from biology, particularly animal locomotion based on muscle-driven contractions. While traditional engineering assembles components sequentially, locomotive animals are built via self-organized developmental programs. Stem cells, under the right conditions, can mimic these processes in vitro, offering a pathway to develop muscle-propelled biobots in a self-organized building process. Here, we demonstrate that existent cardiogenic gastruloid protocols can produce motile aggregates from mouse embryonic stem cells, although with very limited efficiency. We then identify a novel protocol that yields contractile aggregates with higher frequency and larger contractile areas. In this novel protocol, mesendoderm induction using TGF-beta ligands is followed by cardiogenic induction with FGFs and VEGF. Synthetic organizers further control contraction localization. Aggregates developed via this protocol show enhanced motility, marking a step forward towards building motile cardiobots from self-organized biological material. This strategy opens new possibilities for designing autonomous biobots and studying the evolution of muscle-powered movement of multicellular organisms and cardiovascular development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。