Macrophages release neuraminidase and cleaved calreticulin for programmed cell removal.

巨噬细胞释放神经氨酸酶和裂解的钙网蛋白,以进行程序性细胞清除

阅读:12
作者:Banuelos Allison, Baez Michelle, Zhang Allison, Yılmaz Leyla, Kasberg William, Volk Regan, Georgeos Nardin, Koren-Sedova Elle, Le Uyen, Burden Andrew T, Marjon Kristopher D, Lippincott-Schwartz Jennifer, Zaro Balyn W, Weissman Irving L
Calreticulin (CALR) is primarily an endoplasmic reticulum chaperone protein that also plays a key role in facilitating programmed cell removal (PrCR) by acting as an "eat-me" signal for macrophages, directing their recognition and engulfment of dying, diseased, or unwanted cells. Recent findings have demonstrated that macrophages can transfer their own CALR onto exposed asialoglycans on target cells, marking them for PrCR. Despite the critical role CALR plays in this process, the molecular mechanisms behind its secretion by macrophages and the formation of binding sites on target cells remain unclear. Our findings show that CALR undergoes C-terminal cleavage upon secretion, producing a truncated form that functions as the active eat-me signal detectable on target cells. We identify cathepsins as potential proteases involved in this cleavage process. Furthermore, we demonstrate that macrophages release neuraminidases, which modify the surface of target cells and facilitate CALR binding. These insights reveal a coordinated mechanism through which lipopolysaccharide (LPS)-activated macrophages regulate CALR cleavage and neuraminidase activity to mark target cells for PrCR. How they recognize the cells to be targeted remains unknown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。