BACKGROUND: Emerging evidence links macrophage overactivation to sepsis-associated acute lung injury (ALI), yet the role of lung tissue-derived extracellular vesicles (Ti-EVs) in this process remains unclear. This study combines transcriptomic profiling and functional validation to reveal how Lung Ti-EVs mediate macrophage polarization through miRNA-dependent NLRP3 inflammasome activation. METHODS: We established a sepsis mouse model, extracted and characterized lung tissue-derived EVs, performed high-throughput transcriptome sequencing and bioinformatics analysis. Intratracheal administration of these EVs to wild-type C57BL/6 mice revealed their effects on pulmonary inflammation, macrophage polarization, and proliferation. In vitro co-culture experiments with Raw264.7 macrophages further validated these findings and explored underlying mechanisms. RESULTS: We identified extracellular vesicles (EVs) enriched in lung tissues from septic ALI mice, selectively carrying miRNAs including miR-128-3p. In vivo administration of these EVs exacerbated pulmonary inflammation by expanding M1 macrophage populations, while in vitro experiments demonstrated EV-mediated miR-128-3p delivery to macrophages stimulated TNF-α and IL-6 production. Mechanistically, miR-128-3p promoted macrophage proliferation and inflammatory responses by targeting Rab20.
Lung Tissue Extracellular Vesicles-Mediated Delivery of miR-128-3p as a Novel Mechanism of Acute Lung Inflammation.
肺组织细胞外囊泡介导的 miR-128-3p 递送是急性肺部炎症的一种新机制
阅读:7
作者:Deng Wei, Zhu Xiaoping, Li Hang, Hu Ping, Qian Kejian, Liu Fen
| 期刊: | International Journal of Nanomedicine | 影响因子: | 6.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 15; 20:4831-4848 |
| doi: | 10.2147/IJN.S510241 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
