miR-1-3p Downregulation as a Consistent Biomarker for Atrial Fibrillation Burden in Patients with Sick Sinus Syndrome: A Multi-Sample Analysis.

miR-1-3p 下调作为病态窦房结综合征患者心房颤动负荷的稳定生物标志物:多样本分析

阅读:5
作者:Wang Hui-Ting, Chen Shyh-Ming, Chen Huang-Chung, Lin Pei-Ting, Chen Yung-Lung
Atrial fibrillation (AF) is a leading cause of stroke, heart failure, and cardiovascular morbidity, yet its pathophysiology remains incompletely understood. Among various molecular regulators, microRNAs (miRNAs) have emerged as promising biomarkers for AF detection and burden monitoring. However, the optimal sample type for miRNA analysis remains unclear, posing a challenge for biomarker standardization. This study aimed to assess whether miRNA expression profiles remain consistent across plasma and blood cells, with a focus on identifying miRNAs with a strong predictive potential for AF burden. This exploratory study recruited patients diagnosed with sick sinus syndrome who had undergone permanent pacemaker implantation. Participants were stratified into three groups based on AF status: no AF (n = 2), paroxysmal AF (PaAF; n = 2), and persistent AF (PerAF; n = 2) for white blood cell (WBC) samples, and pooled plasma samples from no AF (n = 3 pools) and PerAF (n = 3 pools). Using an miRNA microarray analysis, miR-1-3p was consistently downregulated in both WBC and plasma samples of patients with AF, showing significant decreases (fold-change in WBC: PaAF 0.22, PerAF 0.20; plasma PerAF 0.28) and highlighting its potential as a circulating biomarker for AF burden. Additional differentially expressed miRNAs, including miR-451a and miR-382-5p, exhibited sample-dependent variations, underscoring the importance of validating miRNA expression across multiple biological compartments. The study highlights the need for mechanistic investigations to determine whether miR-1-3p directly contributes to AF pathogenesis or serves as a downstream consequence of atrial remodeling. These findings reinforce the potential of miR-1-3p as a reliable circulating biomarker for AF, offering new avenues for non-invasive monitoring and risk stratification. Future research should explore the role of miR-1-3p in AF-related molecular pathways and its applicability as a therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。