Cancer Cell-Secreted miR-33a Reduces Stress Granule Formation by Targeting Polyamine Metabolism in Stroma to Promote Tumourigenesis.

癌细胞分泌的 miR-33a 通过靶向基质中的多胺代谢来减少应激颗粒的形成,从而促进肿瘤发生

阅读:5
作者:Hu Sheng, Li Xu, Hu Qixin, Wang Chenyu, Hua Ao, Deng Gang, Huang Wenda, Fu Xiaoyu, Zhou Haifeng, Zhang Xiaohui, Li Meixin, Wu Juan, Chen Mingzhou, Zhao Xiaolu, Li Lianyun, Li Zifu, Wu Min, Li Juanjuan, Yan Wei
Tumour progression depends on the bidirectional interactions between cancer and stroma in the heterogeneous tumour microenvironment (TME) partially through extracellular vesicles (EVs). However, the secretary mechanism and biological effect of cancer cell derived EVs on tumour survival under starvation is poorly defined. Here, we identify cancer cells selectively secrete miR-33a with the assistance of aconitase 1 (ACO1), an iron-responsive RNA binding protein, under glucose starvation and lower iron level, which affiliates the binding capability of miR-33a and ACO1. Exosomal miR-33a suppresses putrescine biosynthesis by targeting AGMAT in cancer-associated fibroblasts (CAFs) from tumour core region, where putrescine inhibits the expression of demethylase KDM5C. TIA1 gene, stress granule (SG) marker, is tightly regulated by miR-33a/KDM5C/H3K4me3 axis and exosomal miR-33a diminishes the formation of stromal SGs in CAFs. Collectively, our study reveals tumour selectively secretes miR-33a-5p through EVs to remodel the stromal SG formation and gain survival possibility for cancer cells in tumour core region, highlighting a novel regulatory mechanism of iron and nutrient level on EV secretion and the function of polyamine metabolism in reshaping epigenetic profiles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。