CRISPR-Cas9-mediated homology-directed repair (HDR) can introduce desired mutations at targeted genomic sites, but achieving high efficiencies is a major hurdle in many cell types, including cells deficient in DNA repair activity. In this study, we used genome-wide screening in Fanconi anemia patient lymphoblastic cell lines to uncover suppressors of CRISPR-Cas9-mediated HDR. We found that a single exonuclease, TREX1, reduces HDR efficiency when the repair template is a single-stranded or linearized double-stranded DNA. TREX1 expression serves as a biomarker for CRISPR-Cas9-mediated HDR in that the high TREX1 expression present in many different cell types (such as U2OS, Jurkat, MDA-MB-231 and primary T cells as well as hematopoietic stem and progenitor cells) predicts poor HDR. Here we demonstrate rescue of HDR efficiency (ranging from two-fold to eight-fold improvement) either by TREX1 knockout or by the use of single-stranded DNA templates chemically protected from TREX1 activity. Our data explain why some cell types are easier to edit than others and indicate routes for increasing CRISPR-Cas9-mediated HDR in TREX1-expressing contexts.
Removal of TREX1 activity enhances CRISPR-Cas9-mediated homologous recombination.
去除 TREX1 活性可增强 CRISPR-Cas9 介导的同源重组
阅读:6
作者:Karasu Mehmet E, Toufektchan Eléonore, Chen Yanyang, Albertelli Alessandra, Cullot Grégoire, Maciejowski John, Corn Jacob E
| 期刊: | Nature Biotechnology | 影响因子: | 41.700 |
| 时间: | 2025 | 起止号: | 2025 Jul;43(7):1168-1176 |
| doi: | 10.1038/s41587-024-02356-3 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
