Genotype Distribution and Migration Patterns of Hepatitis C Virus in Shandong Province, China: Molecular Epidemiology and Phylogenetic Study.

中国山东省丙型肝炎病毒基因型分布及迁移模式:分子流行病学和系统发育研究

阅读:18
作者:Lin Lin, Wang Guoyong, Hao Lianzheng, Yan Tingbin
BACKGROUND: Hepatitis C virus (HCV) remains a significant public health concern in China, particularly in Shandong Province, where detailed molecular epidemiological data are limited. HCV exhibits substantial genetic diversity, and understanding its genotype distribution and transmission dynamics is critical for developing effective control strategies. OBJECTIVE: This study aimed to investigate the genetic diversity, geographic dissemination, and evolutionary history of HCV genotypes in Shandong Province, China, using molecular techniques and phylogenetic methods. METHODS: A total of 320 HCV-positive serum samples were collected from multiple hospitals across Shandong Province between 2013 and 2021. HCV RNA was extracted and amplified targeting the 5' untranslated region (UTR), Core, and NS5B regions. Sequencing was conducted, and genotypes were determined using the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST). Phylogenetic trees were constructed using maximum likelihood methods with the general time reversible with Gamma-distributed rate variation among sites [(GTR)+Gamma model]. The temporal and geographic evolution of the major subtypes (1b and 2a) was analyzed using Bayesian Markov chain Monte Carlo (MCMC) methods implemented in Bayesian Evolutionary Analysis Sampling Trees (BEAST). The Bayesian skyline plot (BSP) was used to infer population dynamics and estimate the time to the most recent common ancestor (tMRCA). RESULTS: Genotypes 1b (n=165) and 2a (n=131) were identified as the predominant subtypes, with a small number of genotypes 3b, 6a, 6k, and potential recombinant strains also detected. Phylogenetic analysis revealed distinct evolutionary clustering of 1b and 2a strains, suggesting multiple diffusion events within the province. The tMRCA of subtypes 1b and 2a were estimated to be 1957 and 1979, respectively. Bayesian skyline analysis showed that both subtypes experienced long-term population stability, followed by a rapid expansion period between 2014 and 2019 (1b) and 2014 to 2016 (2a), respectively. The analysis also identified key transmission hubs such as Jinan, Liaocheng, Tai'an, and Dezhou, indicating city-level variations in HCV spread. CONCLUSIONS: This study provides data-supported insights into the genotypic landscape and evolutionary patterns of HCV in Shandong Province. The identification of dominant subtypes, potential recombinant strains, and regional transmission pathways enhances our understanding of local HCV epidemiology. These findings have implications for public health policy, resource allocation, and targeted treatment strategies. The integration of molecular epidemiology and phylogenetics offers a valuable model for infectious disease surveillance and control in similar settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。