BACKGROUND: A hypoxic microenvironment is the most frequent characteristic in tumor microenvironment. Programmed death-ligand 1 (PD-L1) is an important molecule and therapeutic target that mediates the immune response of tumor cells. Previous studies have shown that hypoxia can lead to increased expression of Nucleophosmin 1 (NPM1) and PD-L1. However, the exact regulatory mechanisms of NPM1 and PD-L1 expression under hypoxic conditions are still poorly understood. METHODS: The relationships among hypoxia, NPM1 and PD-L1 were explored by western blotting, immunofluorescence staining, flow cytometry and chromatin immunoprecipitation-quantitativePCR(ChIP-qPCR). Animal tumor models were established to explore the effect of NPM1 expression on tumor growth. The relationships between NPM1 and breast cancer (BC) clinical features and immune infiltration were revealed by bioinformatics analysis. RESULTS: NPM1 mediates increased PD-L1 expression in the hypoxic microenvironment of BC. HIF-1α can increase the expression of NPM1 by activating the p-AKT pathway and binding to the NPM1 promoter. Increased expression of NPM1 can promote tumor growth and inhibit T cell infiltration. Bioinformatics analysis showed that the high expression of NPM1 was associated with poorer survival and immunosuppression in patients with BC. CONCLUSIONS: The hypoxic microenvironment promotes PD-L1 expression via NPM1 in BC, which may be further associated with the inhibition of tumor immunity. NPM1 may serve as a potential target for modulating PD-L1 immunotherapy.
Hypoxia upregulates the expression of PD-L1 via NPM1 in breast cancer.
缺氧通过 NPM1 上调乳腺癌中 PD-L1 的表达
阅读:6
作者:Yu Yihui, Sun Ran, Hu Feiyun, Ding Zite, Li Xin, Han Jiyuan, Liang Leiting, Wang Tian, Xi Guifu, Dong Xueyi, Li Yanlei, Zhao Xiulan, Zhang Danfang
| 期刊: | Journal for ImmunoTherapy of Cancer | 影响因子: | 10.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 23; 13(6):e010151 |
| doi: | 10.1136/jitc-2024-010151 | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
