Brain development is orchestrated by a complex interplay of genetic and environmental signals, with endocytosis serving as a pivotal process in integrating extracellular cues. However, the specific role of endocytosis in neurogenesis remains unclear. We uncover a critical function of the interferon-induced transmembrane protein, IFITM2, essential for endocytic processes in radial glial cells (RGCs). IFITM2 is highly expressed near the ventricular surface in the developing brain. Loss of IFITM2 impairs endosome formation and disrupts RGC maintenance. Mechanistically, we confirmed that the YXXø endocytic motif on IFITM2 is essential for its subcellular localization, with mutations in this motif reducing endocytic vesicles. Additionally, the K82 and K87 residues of IFITM2 interact with phosphoinositides to promote endocytic vesicle formation. Polarized localization of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) on the ventricular side suggests its role in vesicle formation. IFITM2 deficiency also leads to reduced phosphorylation of AKT and GSK3β. These findings highlight the essential role of IFITM2 in regulating endocytosis in RGCs, which is critical for maintaining neural stem cells and proper brain development, offering new insights into the connection between cellular signaling and neurogenesis in both mouse and human models.
IFITM2 Modulates Endocytosis Maintaining Neural Stem Cells in Developing Neocortex.
IFITM2 调节内吞作用,维持发育中新皮层的神经干细胞
阅读:7
作者:Lv Yuqing, Zou Wenzheng, Li Lin, Zhang Shukui, Liang Jiaqi, Pu Jiali, Jiao Jianwei
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 May;12(17):e2501593 |
| doi: | 10.1002/advs.202501593 | 研究方向: | 发育与干细胞、神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
