Osteosarcoma (OS), the most common primary malignant bone tumor in pediatric and adolescent populations, is characterized by significant morbidity and mortality. MicroRNAs (miRNAs) are essential non-coding RNAs that exert pivotal regulatory functions in diverse physiological and pathological processes, including tumorigenesis, disease progression, and drug resistance. The association of miR-34a-5p with osteosarcoma has been documented; However, its underlying mechanisms remain poorly understood.This investigation delineates the impact of miR-34a-5p on the proliferation, invasion, migration, and apoptosis of osteosarcoma cells via in vitro assays, aiming to elucidate the associated mechanisms. Employing up-regulation and knockdown strategies, this study evaluated the roles of miR-34a-5p and FoxM1 in modulating osteosarcoma cell behaviors.These effects were further validated through a rescue experiment, providing robust evidence of the miRNA's impact. Quantitative RT-PCR showed that, compared with normal tissues, miR-34a-5p was significantly downregulated while FoxM1 was markedly upregulated in nine osteosarcoma samples.Increased miR-34a-5p expression attenuated proliferation, migration, and invasion in MG-63 and U2OS cell lines, while enhancing apoptosis.Bioinformatic analyses and dual luciferase assays identified FoxM1 as a downstream target of miR-34a-5p, a finding corroborated by quantitative RT-PCR and Western blotting, which confirmed the negative regulation of FoxM1 by miR-34a-5p.Additionally, FoxM1 knockdown reduced tumor cell proliferation, migration, and invasion, concurrently promoting apoptosis; co-inhibition of miR-34a-5p and FoxM1 partially mitigated these effects. This study demonstrates that miR-34a-5p significantly inhibits osteosarcoma cell proliferation, migration, and invasion, while promoting apoptosis, by targeting and suppressing FoxM1. Our findings suggest that miR-34a-5p is a potential tumor suppressor with therapeutic value. The establishment of the miR-34a-5p/FoxM1 regulatory axis provides new insights into the molecular mechanisms of osteosarcoma. Targeting this axis could offer a promising strategy for improving the prognosis of osteosarcoma.
New mechanism of miR-34a-5p in regulating the biological behavior of osteosarcoma by targeting FoxM1.
miR-34a-5p通过靶向FoxM1调控骨肉瘤生物学行为的新机制
阅读:7
作者:Shen Wenxiang, Liu Xiang, Wang Shengdong, Du Shaowen, Cong Liming, Ma Yulong, Ye Kaishan
| 期刊: | Cytotechnology | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 Jun;77(3):90 |
| doi: | 10.1007/s10616-025-00758-y | 研究方向: | 肿瘤 |
| 疾病类型: | 骨肉瘤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
