Osteoradionecrosis of the jaw (ORNJ) is a complication of radiation therapy that can lead to hard-to-repair bone defects. Bone marrow mesenchymal stem cells (BMSCs) have been identified as potential "seeds" for restoring bone defects. In this study, we reported extracellular matrix protein cysteine-rich angiogenic inducer 61 (CYR61) to enhance the migratory and osteogenic functions of irradiated BMSCs (IR BMSCs) by migrasomes. Various assays, including alkaline phosphatase (ALP) activity assay, Cell Counting Kit-8 (CCK-8), apoptosis analysis, qRT-PCR, western blot, ALP staining, alizarin red S (ARS) staining, wound healing assay, transwell assay, and co-immunoprecipitation (co-IP) were conducted to assess the optimal radiation dose for generating IR BMSCs and migrasome functionality. Proteomics, bioinformatics analysis, gene transfection, and molecular docking were employed to identify key molecules mediating migration and osteoblastic differentiation and its downstream mechanisms. Furthermore, confocal microscopy, transmission electron microscopy (TEM), and western blot were utilized to identify migrasomes. Results showed that a radiation dose of 2âGy inhibited migratory and osteogenic abilities of cells without significantly affecting viability. CYR61 emerged as a pivotal molecule regulating BMSC migration and osteoblastic differentiation through binding to integrin αvβ3 at the 125th aspartic acid and activating the ERK signaling pathway. We discovered that migrasomes are the key vehicle effectively delivering CYR61 to restore migration and osteogenesis of IR BMSCs. In conclusion, migrasomes-secreted CYR61 facilitating a promotional effect can regulate the migration and osteogenesis of IR BMSCs. Thus, migrasomes-origin CYR61 may serve as potential therapeutic agents for repairing ORNJ-related bone defects.
ECM Protein CYR61 Promotes Migration and Osteoblastic Differentiation of Irradiation BMSCs via Migrasomes.
ECM 蛋白 CYR61 通过迁移体促进辐射 BMSC 的迁移和成骨细胞分化
阅读:6
作者:Yan Chaoting, Sun Wen, Chen Zhi, Liu Liu, Zhou Pin, Gu Yueguang, Wu Geng, Wang Kunpeng
| 期刊: | Stem Cells International | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Sep 21; 2025:8825935 |
| doi: | 10.1155/sci/8825935 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
