The poultry industry is facing the growing need to decrease the use of antibiotics to prevent increasing antimicrobial resistance (AMR). Toward this aim, probiotics and bacteriophages have been suggested as an alternative to antibiotics to reducing Salmonella in broilers, which poses risks to food safety and public health. Previous results showed that selected Bacillus probiotics can significantly limit broiler contamination, and anti-Salmonella phages are already available in the US and EU. However, a comprehensive evaluation of the impact of probiotics and phages on commercial poultry farms is still lacking. To this aim, a pre-post study was conducted in a poultry farm experiencing recurrent Salmonella outbreaks, to assess the anti-Salmonella effectiveness of a combined probiotic-phage approach. The study included two complete rearing cycles: T1, conducted in standard conditions and used as a control, and T2, when probiotics and phages were applied. Salmonella monitoring was performed in both the environment and broilers throughout the study periods, showing a significant 90 % decrease in Salmonella presence in T2 compared to T1 cycle (P ⤠0.001). The decrease was observed at both the environmental and animal (caeca) levels. Notably, the whole broiler caecal microbiome was modified in T2 compared to T1 broilers, evidencing a significant increase in biodiversity accompanied by an earlier appearance of Ruminococcus, Clostridium, and Faecalibacterium genera. In parallel, broiler mortality was reduced by 72 % and broiler weight was increased by 6.4 % in T2 vs. T1 broilers (P ⤠0.01). The findings indicate that a combined probiotic/phage approach could be a promising strategy to combat the Salmonella burden, while reducing the requirement for antibiotics and improving broiler health.
Harnessing probiotics and bacteriophages to fight Salmonella and limit the use of antibiotics in broilers: a study in commercial conditions.
利用益生菌和噬菌体对抗沙门氏菌并限制肉鸡抗生素的使用:一项商业条件下的研究
阅读:9
作者:Soffritti Irene, D'Accolti Maria, Bini Francesca, Mazziga Eleonora, Volta Antonella, Bisi Matteo, Mazzacane Sante, De Cesare Alessandra, Indio Valentina, Manfreda Gerardo, Caselli Elisabetta
| 期刊: | Poultry Science | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 24; 104(10):105595 |
| doi: | 10.1016/j.psj.2025.105595 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
