Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the most prevalent chronic liver disorder globally. Due to its intricate pathogenesis and the current lack of efficacious pharmacological interventions, there is a pressing need to discover novel therapeutic targets and agents for MASLD treatment. Herein, it is found that histone deacetylase 11 (HDAC11), a subtype of HDAC family, is markedly overexpressed in both in vitro and in vivo models of MASLD. Furthermore, the knockdown of HDAC11 is observed to mitigate lipid accumulation in hepatic cells. A highly selective HDAC11 inhibitor, B6, which exhibits favorable pharmacokinetic property and liver distribution, is further designed and synthesized. Integrating RNA-seq data with in vivo and in vitro experiments, B6 is found to inhibit de novo lipogenesis (DNL) and promote fatty acid oxidation, thus mitigating hepatic lipid accumulation and pathological symptoms in MASLD mice. Further omics analysis and experiments reveal that B6 enhances the phosphorylation of AMPKα1 at Thr172 through the inhibition of HDAC11, consequently modulating DNL and fatty acid oxidation in the liver. In summary, this study identifies HDAC11 as a potential therapeutic target in MASLD and reports the discovery of a highly selective HDAC11 inhibitor with favorable drug-like properties for the treatment of MASLD.
Targeting Histone Deacetylase 11 with a Highly Selective Inhibitor for the Treatment of MASLD.
利用高选择性抑制剂靶向组蛋白去乙酰化酶 11 治疗 MASLD
阅读:5
作者:Zhang Feng, Yue Kairui, Sun Simin, Lu Shengyuan, Jia Geng, Zha Yang, Zhang Shuang, Chou C James, Liao Chenzhong, Li Xiaoyang, Duan Yajun
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;12(15):e2412903 |
| doi: | 10.1002/advs.202412903 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
