Mapping the Interactome of KRAS and Its G12C/D/V Mutants by Integrating TurboID Proximity Labeling with Quantitative Proteomics.

结合 TurboID 邻近标记和定量蛋白质组学,绘制 KRAS 及其 G12C/D/V 突变体的相互作用组图谱

阅读:4
作者:Song Jiangwei, Wang Busong, Zou Mingjie, Zhou Haiyuan, Ding Yibing, Ren Wei, Fang Lei, Zhang Jingzi
KRAS mutations are major drivers of human cancers, yet how distinct mutations rewire protein interactions and metabolic pathways to promote tumorigenesis remains poorly understood. To address this, we systematically mapped the protein interaction networks of wild-type KRAS and three high-frequency oncogenic mutants (G12C, G12D, and G12V) using TurboID proximity labeling coupled with quantitative proteomics. Bioinformatic analysis revealed mutant-specific binding partners and metabolic pathway alterations, including significant enrichment in insulin signaling, reactive oxygen species regulation, and glucose/lipid metabolism. These changes collectively drive tumor proliferation and immune evasion. Comparative analysis identified shared interactome shifts across all mutants: reduced binding to LZTR1, an adaptor for KRAS degradation, and enhanced recruitment of LAMTOR1, a regulator of mTORC1-mediated growth signaling. Our multi-dimensional profiling establishes the first comprehensive map of KRAS-mutant interactomes and links specific mutations to metabolic reprogramming. These findings provide mechanistic insights into KRAS-driven malignancy and highlight LZTR1 and LAMTOR1 as potential therapeutic targets. The study further lays a foundation for developing mutation-specific strategies to counteract KRAS oncogenic signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。