Eugenol alleviates renal ischemia-reperfusion injury induced-endoplasmic reticulum stress via activating Sestrin2.

丁香酚通过激活 Sestrin2 来减轻肾脏缺血再灌注损伤引起的内质网应激

阅读:6
作者:Liu Jingwei, Sun Xujie, Liang Junfeng, Song Shiqiang
INTRODUCTION: Renal Ischemia-Reperfusion Injury (RIRI) often arises due to heightened oxidative stress, rendering it a central focus of research. Sestrin2 plays a pivotal role in regulating oxidative stress; nevertheless, its impact on the renoprotective properties of Eugenol (EU) during RIRI warrants further investigation. METHODS: Mice and TCMK-1 cells were categorically assigned into six groups: Sham/Control, Ischemia-Reperfusion (IR)/HR (Hypoxia-Reoxygenation), IR/HR+EU, Sham/Control+Sestrin2-KO, IR/HR+Sestrin2-KO, and IR/HR+EU+Sestrin2-KO. The effects of EU and the involvement of Sestrin2 in RIRI/HR were evaluated using Urea Nitrogen (BUN), Creatinine (Scr), Superoxide Dismutase (SOD), Glutathione (GSH), Catalase (CAT), and Malondialdehyde (MDA) assay kits; western blotting; cell viability assays; HE-staining; and Reactive Oxygen Species (ROS) detection. RESULTS: Following RIRI/HR, a marked deterioration in kidney function and a significant surge in oxidative stress levels were observed. However, EU treatment ameliorated renal injury and inhibited oxidative stress. Additionally, EU upregulated Sestrin2 expression, and the renoprotective effects of EU were reversed upon Sestrin2 knockdown. CONCLUSION: The present study posits that EU effectively mitigates RIRI/HRI (Hypoxia-Reoxygenation Injury), and its mechanism of renal protection potentially involves the upregulation of Sestrin2, coupled with the inhibition of oxidative and Endoplasmic Reticulum Stress (ERS).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。